Swift Observations of GRB 140103A

V. Mangano (PSU), W.H. Baumgartner (GSFC/UMBC), N.P.M. Kuin (UCL-MSSL), M.H. Siegel (PSU), S.D. Barthelmy (GSFC), D.N. Burrows (PSU), J.A. Kennea (PSU) and N. Gehrels (NASA/GSFC) for the Swift team

1. Introduction

At 00:30:43 UT, the Swift Burst Alert Telescope (BAT) triggered and located GRB 140103A (trigger=582773) (Mangano *et al.* GCN Circ. <u>15656</u>). Swift slewed after 100 s to the burst. At the time of the trigger, the initial BAT position was 77° from the Sun (3.4 hours West) and 86° from the 4%-illuminated Moon. **Table 1** contains the best reported positions from Swift, and the latest XRT position can be viewed at http://www.swift.ac.uk/xrt positions.

Table 2 is a summary of GCN Circulars about this GRB from observatories other than Swift.

Standard analysis products for this burst are available at http://gcn.gsfc.nasa.gov/swift_gnd_ana.html.

2. BAT Observations and Analysis

As reported by Baumgartner *et al.* (GCN Circ. 15664), the BAT ground-calculated position is RA, Dec = 232.114, 37.752 deg which is RA(J2000) = $15^{h}28^{m}27.2^{s}$ Dec(J2000) = $+37^{\circ}45'08.4"$ with an uncertainty of 1.7 arcmin, (radius, sys+stat, 90% containment). The partial coding was 48%.

The mask-weighted light curve (**Figure 1**) shows two peaks. The first weak peak starts at \sim T-13 s, peaks at \sim T-11 s and ends at \sim T-6 s. The second peak starts at \sim T-4 s, peaks at \sim T+1 s and ends at \sim T+9 s. T₉₀ (15-350 keV) is 17.3 \pm 1.9 s (estimated error including systematics).

The time-averaged spectrum from T-12.52 to T+6.94 s is best fit by a simple power-law model. The power law index of the time-averaged spectrum is 2.6 ± 0.2 . The fluence in the 15-150 keV band is $(6.0 \pm 0.7) \times 10^{-7}$ erg cm⁻². This fluence is larger than that of 24% of the long GRBs in the Second BAT GRB Catalog (Sakamoto *et al.* 2011). The 1-s peak photon flux measured from T+0.39 s in the 15-150 keV band is 2.1 ± 0.3 ph cm⁻² s⁻¹. All the quoted errors are at the 90% confidence level.

The results of the batgrbproduct analysis are available at http://gcn.gsfc.nasa.gov/notices_s/582773/BA/.

3. XRT Observations and Analysis

Analysis of the initial XRT data was reported by Mangano (GCN Circ. <u>15666</u>). We have analysed 6.9 ks of XRT data for GRB 140103A, from 153 s to 59.7 ks after the BAT trigger. The data comprise 2.6 ks in Windowed Timing (WT) mode (the first 7 s were taken while Swift was slewing) with the remainder in Photon Counting (PC) mode.

GCN Report 459.1 26-Apr-14

The light curve (**Figure 2**) can be modelled with an initial power-law decay with an index of α =0.18 (+0.17, -0.19), followed by a break at T+3221 s to an α of 1.18 (+0.51, -0.28).

A spectrum formed from the WT mode data can be fitted with an absorbed power-law with a photon spectral index of 2.6 (+0.5, -0.4). The best-fitting absorption column is 2.5 (+1.9, -1.3) $\times 10^{21}$ cm⁻², in excess of the Galactic value of 1.3 $\times 10^{20}$ cm⁻² (Kalberla *et al.* 2005). The counts to observed (unabsorbed) 0.3-10 keV flux conversion factor deduced from this spectrum is 2.7 $\times 10^{-11}$ (6.1 $\times 10^{-11}$) erg cm⁻² count⁻¹.

A summary of the WT-mode spectrum is thus:

Total column: $2.5 (+1.9, -1.3) \times 10^{21} \text{ cm}^{-2}$

Galactic foreground: $1.3 \times 10^{20} \text{ cm}^{-2}$

Excess significance: 3.0σ Photon index: 2.6 (+0.5, -0.4)

The results of the XRT team automatic analysis are available at http://www.swift.ac.uk/xrt products/00582773.

4. UVOT Observations and Analysis

The Swift/UVOT began settled observations of the field of GRB 140103A 172 s after the BAT trigger (Siegel and Mangano GCN Circ. $\underline{15671}$). No optical afterglow consistent with the XRT position (Mangano *et al.*, GCN Circ. $\underline{15666}$) is detected in the initial UVOT exposures. **Table 3** gives preliminary magnitudes using the UVOT photometric system (Breeveld *et al.* 2011, AIP Conf. Proc., 1358, 373). No correction has been made for the expected extinction in the Milky Way corresponding to a reddening of E_{B-V} of 0.01 mag. in the direction of the GRB (Schlegel *et al.* 1998).

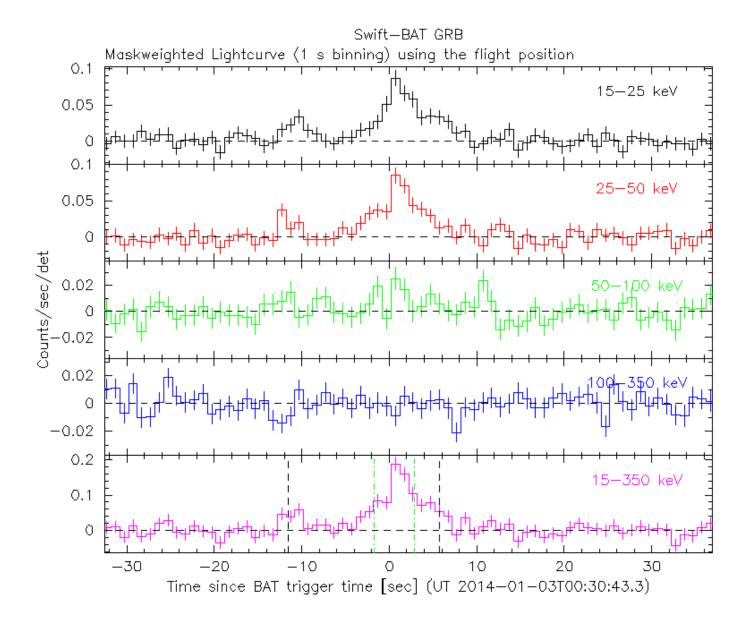


Figure 1. The BAT mask-weighted light curve in the four individual and total energy bands. The units are counts s^{-1} illuminated-detector⁻¹.

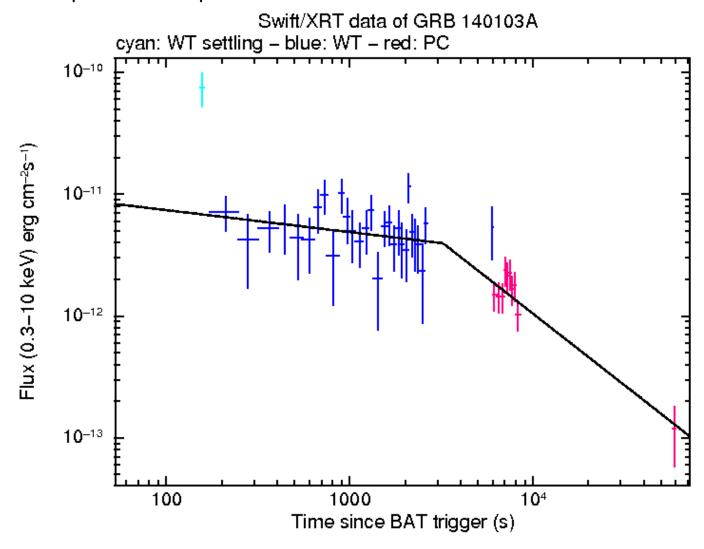


Figure 2. The XRT light curve.

RA (J2000)	Dec (J2000)	Error	Note	Reference
$15^{\rm h}28^{\rm m}20.99^{\rm s}$	+37°45'33.0"	3.6"	XRT-final	UKSSDC
15 ^h 28 ^m 20.99 ^s	+37°45'33.0"	3.6"	XRT-refined	Mangano GCN Circ. <u>15666</u>
15 ^h 28 ^m 27.2 ^s	+37°45'08.4"	1.7'	BAT-refined	Baumgartner <i>et al.</i> GCN Circ. <u>15664</u>

Table 1. Positions from the Swift instruments.

	Authors	Circ.	Subject	Observatory	Notes
Optical	Gorbovskoy <i>et al.</i>	15660	MASTER-Net optical observations	MASTER	upper limits
Optical	Cenko and Perley	<u>15675</u>	IPh() ()hservations	Palomar 60-inch	
Optical	Huang and Urata	IIANX/	Lulin Optical r-band Observations	Lulin	

GCN Report 459.1 26-Apr-14

Table 2. Summary of GCN Circulars from other observatories sorted by band and then circular number.

Filter	T _{start} (s)	$T_{\text{stop}}(s)$	Exp(s)	Mag
white _{FC}	172	321	147	>20.8
white	172	2581	361	>21.5
v	406	2631	252	>19.1
b	506	2557	233	>19.9
u	480	2704	252	>19.5
w1	456	2680	252	>19.6
m2	6760	8396	393	>20.0
w2	382	2607	252	>19.9

Table 3. UVOT observations reported by Siegel and Mangano (GCN Circ. $\underline{15671}$). The start and stop times of the exposures are given in seconds since the BAT trigger. The preliminary 3- σ upper limits are given. No correction has been made for extinction in the Milky Way.